Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
ScientificWorldJournal ; 2022: 4873008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35110974

RESUMO

Pigeon pea (PP) [Cajanus cajan (L.) Huth] plays an important role in preserving poor smallholders' major source of income in the tropics and subtropics by improving food and feed security, particularly protein intake. In the meantime, protein deficiency is frequent in tropical and subtropical regions due to rapidly increasing human populations and the high cost of animal-origin proteins. As a result, pulse crops should be their primary source of protein. Among these, PP is the most important pulse crop utilized as a food component in rain-fed agricultural conditions with the lowest costs, and it is the best source of protein supplements in typical cereal-based diets to fill the nutritional deficit. Despite this, it is the world's least-used pulse crop. Therefore, the primary goal of this review was to provide and synthesize scientifically confirmed and up-to-date information on the dietary usage of pigeon pea for food and feed. Protein, carbohydrates, minerals, vitamins, and essential amino acids are all present in reasonable amounts in both mature and immature PP seeds. PP has the most potential for usage as food and feed, and its nutrients are comparable to those of soybeans and maize. PP's green leaves, roots, seeds, and pods are high in phenolic compounds, which have anti-inflammation, antibacterial, antioxidant, anticarcinogenic, and antidiabetic properties, as well as the ability to cure diseases like measles, smallpox, chicken pox, sickle cell anemia, fever, dysentery, hepatitis, and antimalarial medications for the body. Furthermore, the addition of pigeon pea and its by-products improves ruminant and nonruminant animal feeding performance significantly. In general, PP products such as dried grain, fresh (aerial portion), and green pods are used as a low-cost (low-cost) source of high-quality and quantity of protein food and feed for tropical and subtropical populations' livelihoods.


Assuntos
Ração Animal/normas , Cajanus/química , Dieta , Valor Nutritivo , Ração Animal/provisão & distribuição , Animais , Cajanus/crescimento & desenvolvimento , Humanos
2.
PLoS One ; 15(11): e0242221, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33216769

RESUMO

An economically valuable woody plant species tree bean (Cajanus cajan (L.) Millsp.) is predominantly cultivated in tropical and subtropical areas and is regarded as an important food legume (or pulse) crop that is facing serious sodium ion stress. NAM (N-acetyl-5-methoxytryptamine) has been implicated in abiotic and biotic stress tolerance in plants. However, the role of NAM in sodium ion stress tolerance has not been determined. In this study, the effect of NAM was investigated in the economically valuable woody plant species, challenged with stress at 40 mM sodium ion for 3 days. NAM-treated plants (200 µM) had significantly higher fresh weight, average root length, significantly reduced cell size, increased cell number, and increased cytoskeleton filaments in single cells. The expression pattern of one of 10 Tree bean Dynamic Balance Movement Related Protein (TbDMP), TbDMP was consistent with the sodium ion-stress alleviation by NAM. Using TbDMP as bait, Dynamic Balance Movement Related Kinase Protein (TbDBK) was determined to interact with TbDMP by screening the tree bean root cDNA library in yeast. Biochemical experiments showed that NAM enhanced the interaction between the two proteins which promoted resist sodium ion stress resistance. This study provides evidence of a pathway through which the skeleton participates in NAM signaling.


Assuntos
Cajanus/metabolismo , Proteínas de Plantas/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Cajanus/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Íons/química , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Serotonina/análogos & derivados , Serotonina/farmacologia , Nicotiana/metabolismo
3.
J Agric Food Chem ; 68(31): 8350-8361, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32672956

RESUMO

Phenolic compounds in pigeon pea possess various biological properties beneficial to human health. In this study, pigeon pea hairy root cultures (PPHRCs) were developed as an effective in vitro platform for the production of phenolic compounds. A high-productive hairy root line was screened and characterized, and its culture conditions were optimized in terms of biomass productivity and phenolic yield. The comparative profiling of 10 phenolic compounds in PPHRCs and pigeon pea natural resources (seeds, leaves, and roots) was achieved by ultra-high-performance liquid chromatography-tandem mass spectrometry analysis. The total phenolic yield in PPHRCs (3278.44 µg/g) was much higher than those in seeds (68.86 µg/g) and roots (846.03 µg/g), and comparable to leaves (3379.49 µg/g). Notably, PPHRCs exhibited superiority in the yield of the most important health-promoting compound cajaninstilbene acid (2996.23 µg/g) against natural resources (4.42-2293.31 µg/g). Overall, PPHRCs could serve as promising potential alternative sources for the production of phenolic compounds with nutraceutical/medicinal values.


Assuntos
Cajanus/metabolismo , Fenóis/química , Extratos Vegetais/química , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Antioxidantes/química , Antioxidantes/metabolismo , Cajanus/química , Cajanus/crescimento & desenvolvimento , Técnicas de Cultura de Células , Fenóis/metabolismo , Extratos Vegetais/metabolismo , Raízes de Plantas/metabolismo , Sementes/química , Sementes/metabolismo
4.
Sci Rep ; 10(1): 10294, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32581303

RESUMO

The genome sequences of 16 Streptomyces strains, showing potential for plant growth-promotion (PGP) activities in rice, sorghum, chickpea and pigeonpea, isolated from herbal vermicompost, have been decoded. The genome assemblies of the 16 Streptomyces strains ranged from 6.8 Mb to 8.31 Mb, with a GC content of 72 to 73%. The extent of sequence similarity (in terms of shared ortholog) in 16 Streptomyces strains showed 70 to 85% common genes to the closest publicly available Streptomyces genomes. It was possible to identify ~1,850 molecular functions across these 16 strains, of which close to 50% were conserved across the genomes of Streptomyces strains, whereas, ~10% were strain specific and the rest were present in various combinations. Genome assemblies of the 16 Streptomyces strains have also provided genes involved in key pathways related to PGP and biocontrol traits such as siderophores, auxin, hydrocyanic acid, chitinase and cellulase. Further, the genome assemblies provided better understanding of genetic similarity among target strains and with the publically available Streptomyces strains.


Assuntos
Desenvolvimento Vegetal , Rizosfera , Microbiologia do Solo , Streptomyces/genética , Cajanus/crescimento & desenvolvimento , Cajanus/microbiologia , Cicer/crescimento & desenvolvimento , Cicer/microbiologia , DNA Bacteriano/isolamento & purificação , Genoma Bacteriano , Redes e Vias Metabólicas/genética , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Sorghum/crescimento & desenvolvimento , Sorghum/microbiologia , Streptomyces/isolamento & purificação , Streptomyces/metabolismo , Sequenciamento Completo do Genoma
5.
Genes (Basel) ; 11(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244575

RESUMO

Pigeonpea is an important economic crop in the world and is mainly distributed in tropical and subtropical regions. In order to further expand the scope of planting, one of the problems that must be solved is the impact of soil acidity on plants in these areas. Based on our previous work, we constructed a time series RNA sequencing (RNA-seq) analysis under aluminum (Al) stress in pigeonpea. Through a comparison analysis, 11,425 genes were found to be differentially expressed among all the time points. After clustering these genes by their expression patterns, 12 clusters were generated. Many important functional pathways were identified by gene ontology (GO) analysis, such as biological regulation, localization, response to stimulus, metabolic process, detoxification, and so on. Further analysis showed that metabolic pathways played an important role in the response of Al stress. Thirteen out of the 23 selected genes related to flavonoids and phenols were downregulated in response to Al stress. In addition, we verified these key genes of flavonoid- and phenol-related metabolism pathways by qRT-PCR. Collectively, our findings not only revealed the regulation mechanism of pigeonpea under Al stress but also provided methodological support for further exploration of plant stress regulation mechanisms.


Assuntos
Alumínio/toxicidade , Cajanus/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Transcriptoma/efeitos dos fármacos , Cajanus/genética , Cajanus/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Fatores de Tempo
6.
Sci Rep ; 10(1): 4094, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139706

RESUMO

Most components of petroleum oily sludge (POS) are toxic, mutagenic and cancer-causing. Often bioremediation using microorganisms is hindered by the toxicity of POS. Under this circumstance, phytoremediation is the main option as it can overcome the toxicity of POS. Cajanus cajan a legume plant, was evaluated as a phyto-remediating agent for petroleum oily sludge-spiked soil. Culture dependent and independent methods were used to determine the rhizosphere microorganisms' composition. Degradation rates were estimated gravimetrically. The population of total heterotrophic bacteria (THRB) was significantly higher in the uncontaminated soil compared to the contaminated rhizosphere soil with C. cajan, but the population of hydrocarbon-utilizing bacteria (HUB) was higher in the contaminated rhizosphere soil. The results show that for 1 to 3% oily sludge concentrations, an increase in microbial counts for all treatments from day 0 to 90 d was observed with the contaminated rhizosphere CR showing the highest significant increase (p < 0.05) in microbial counts compared to other treatments. The metagenomic study focused on the POS of 3% (w/w) and based on the calculated bacterial community abundance indices showed an increase in the values for Ace, Cho, Shannon (Shannon-Weaver) and the Simpson's (measured as InvSimpson) indices in CR3 compared to CN3. Both the Simpson's and the Shannon values for CR3 were higher than CN3 indicating an increase in diversity upon the introduction of C. cajan into the contaminated soil. The PCoA plot revealed community-level differences between the contaminated non-rhizosphere control and contaminated rhizosphere microbiota. The PCoA differentiated the two treatments based on the presence or absence of plant. The composition and taxonomic analysis of microbiota-amplified sequences were categorized into eight phyla for the contaminated non-rhizosphere and ten phyla for the contaminated rhizosphere. The overall bacterial composition of the two treatments varied, as the distribution shows a similar variation between the two treatments in the phylum distribution. The percentage removal of total petroleum hydrocarbon (TPH) after 90 days of treatments with 1, 2, 3, 4, and 5% (w/w) of POS were 92, 90, 89, 68.3 and 47.3%, respectively, indicating removal inhibition at higher POS concentrations. As the search for more eco-friendly and sustainable remediating green plant continues, C. cajan shows great potential in reclaiming POS contaminated soil. Our findings will provide solutions to POS polluted soils and subsequent re-vegetation.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Cajanus/metabolismo , Petróleo/metabolismo , Esgotos/análise , Poluentes do Solo/metabolismo , Solo/química , Bactérias/classificação , Bactérias/genética , Biodiversidade , Cajanus/crescimento & desenvolvimento , Cajanus/microbiologia , Monitoramento Ambiental , Microbiota , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Poluentes do Solo/isolamento & purificação
7.
Sci Rep ; 10(1): 4960, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188919

RESUMO

Pigeonpea is the second most important pulse legume crop for food and nutritional security of South Asia that requires accelerated breeding using high throughput genomic tools. Single nucleotide polymorphisms (SNPs) are highly suitable markers for this purpose because of their bi-allelic nature, reproducibility and high abundance in the genome. Here we report on development and use of a pigeonpea 62 K SNP chip array 'CcSNPnks' for Affymetrix GeneTitan® platform. The array was designed after filtering 645,662 genic-SNPs identified by re-sequencing of 45 diverse genotypes and has 62,053 SNPs from 9629 genes belonging to five different categories, including 4314 single-copy genes unique to pigeonpea, 4328 single-copy genes conserved between soybean and pigeonpea, 156 homologs of agronomically important cloned genes, 746 disease resistance and defense response genes and 85 multi-copy genes of pigeonpea. This fully genic chip has 28.94% exonic, 33.04% intronic, 27.56% 5'UTR and 10.46% 3'UTR SNPs and incorporates multiple SNPs per gene allowing gene haplotype network analysis. It was used successfully for the analysis of genetic diversity and population structure of 95 pigeonpea varieties and high resolution mapping of 11 yield related QTLs for number of branches, pod bearing length and number of seeds per pod in a biparental RIL population. As an accurate high-density genotyping tool, 'CcSNPnks' chip array will be useful for high resolution fingerprinting, QTL mapping and genome wide as well as gene-based association studies in pigeonpea.


Assuntos
Cajanus/genética , Cromossomos de Plantas/genética , Genes de Plantas , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Cajanus/crescimento & desenvolvimento , Mapeamento Cromossômico , Genótipo , Repetições de Microssatélites , Fenótipo
8.
World J Microbiol Biotechnol ; 36(3): 44, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32130544

RESUMO

The present study is an attempt to understand the impact of bioinoculants, Azotobacter chroococcum (A), Bacillus megaterium (B), Pseudomonas fluorescens (P), on (a) soil and plant nutrient status, (b) total resident and active bacterial communities, and (c) genes and transcripts involved in nitrogen cycle, during cultivation of Cajanus cajan. In terms of available macro- and micro-nutrients, triple inoculation of the bioinoculants (ABP) competed well with chemical fertilizer (CF). Their 'non-target' effects were assessed in terms of the abundance and activity of the resident bacterial community by employing denaturing gradient gel electrophoresis (DGGE). The resident bacterial community (16S rRNA gene) was stable, while the active fraction (16S rRNA transcripts) was influenced (in terms of abundance) by the treatments. Quantification of the genes and transcripts involved in N cycle by qPCR revealed an increase in the transcripts of nifH in the soil treated with ABP over CF, with an enhancement of 3.36- and 1.57- fold at flowering and maturity stages of plant growth, respectively. The bioinoculants shaped the resident microflora towards a more beneficial community, which helped in increasing soil N turnover and hence, soil fertility as a whole.


Assuntos
Azotobacter/crescimento & desenvolvimento , Bacillus megaterium/crescimento & desenvolvimento , Cajanus/crescimento & desenvolvimento , Pseudomonas fluorescens/crescimento & desenvolvimento , Cajanus/genética , Cajanus/microbiologia , Fertilizantes/análise , Regulação da Expressão Gênica de Plantas , Microbiota , Ciclo do Nitrogênio , Proteínas de Plantas/genética , Rizosfera , Microbiologia do Solo
9.
Theor Appl Genet ; 133(5): 1721-1737, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32062675

RESUMO

KEY MESSAGE: The review outlines advances in pigeonpea genomics, breeding and seed delivery systems to achieve yield gains at farmers' field. Pigeonpea is a nutritious and stress-tolerant grain legume crop of tropical and subtropical regions. Decades of breeding efforts in pigeonpea have resulted in development of a number of high-yielding cultivars. Of late, the development of CMS-based hybrid technology has allowed the exploitation of heterosis for yield enhancement in this crop. Despite these positive developments, the actual on-farm yield of pigeonpea is still well below its potential productivity. Growing needs for high and sustainable pigeonpea yields motivate scientists to improve the breeding efficiency to deliver a steady stream of cultivars that will provide yield benefits under both ideal and stressed environments. To achieve this objective in the shortest possible time, it is imperative that various crop breeding activities are integrated with appropriate new genomics technologies. In this context, the last decade has seen a remarkable rise in the generation of important genomic resources such as genome-wide markers, high-throughput genotyping assays, saturated genome maps, marker/gene-trait associations, whole-genome sequence and germplasm resequencing data. In some cases, marker/gene-trait associations are being employed in pigeonpea breeding programs to improve the valuable yield and market-preferred traits. Embracing new breeding tools like genomic selection and speed breeding is likely to improve genetic gains. Breeding high-yielding pigeonpea cultivars with key adaptation traits also calls for a renewed focus on systematic selection and utilization of targeted genetic resources. Of equal importance is to overcome the difficulties being faced by seed industry to take the new cultivars to the doorstep of farmers.


Assuntos
Cajanus/crescimento & desenvolvimento , Cajanus/genética , Genoma de Planta , Genômica/métodos , Melhoramento Vegetal/normas , Plantas Geneticamente Modificadas/genética , Locos de Características Quantitativas , Genética Populacional , Fenótipo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
10.
Methods Mol Biol ; 2107: 317-333, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31893456

RESUMO

A reliable pigeon pea transformation system can assist the rapid improvement of this important grain legume through transgenic development. Here we describe two methods of Agrobacterium tumefaciens-mediated pigeon pea transformation. In the tissue culture based embryonic explant transformation method, microshoot grafting was included to obtain rapid root induction, while the other method was culture independent and designated as plumular meristem transformation. Both methods drastically enhanced the transformation frequency and have the potential to provide reasonable solutions for maximum transgenic recovery in biotechnological breeding programs.


Assuntos
Agrobacterium tumefaciens/genética , Cajanus/microbiologia , Meristema/citologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Agrobacterium tumefaciens/fisiologia , Cajanus/genética , Cajanus/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Melhoramento Vegetal , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/microbiologia , Técnicas de Cultura de Tecidos , Transformação Genética
11.
Microbiol Res ; 231: 126354, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31678651

RESUMO

Quorum sensing (QS) in rhizobia regulates diverse processes determining the success and efficiency of association with the legume host. Despite the notable importance of QS as well as the well-known underlying variability in the genomic and metabolic components thereof, its study in rhizobia is largely restricted to few laboratory strains. In this work, QS phenomenon in the rhizobia nodulating pigeon pea- one of the most important legume crops of the global-south, is characterized. Using 16S rRNA and recombinaseA sequencing analysis, the selected QS-positive and host-beneficial isolates were identified to be taxonomically affiliated to the genus Ensifer. Their QS components, including homologues of QS genes, and the repertoire of N-acyl homoserine lactone (AHL) autoinducers were identified. Sequences of the QS homologues showed significant variabilities ranging from 10 to >20% with the known Ensifer sequences. Autoinducer profiling using LC-MS/MS revealed the production of long and short chain AHLs variably by the isolates, including 3-oxo-C12-homoserine lactone (3-O-C12-HSL) and 3-OH-C16-HSL as their first report in Rhizobiaceae. Motility and attachment- two of the most crucial traits for effective establishment on host roots were discovered to be QS dependent in in vitro analysis and the same was confirmed using expression analysis of their regulatory genes using qRT-PCR; both revealing a QS mediated repression of motility and promotion of attachment. This study highlights that Ensifer nodulating pigeon pea, although with significant variance in the anatomy of their QS components, regulate symbiotically crucial cell-processes via QS in a scheme that is conserved in multiple genera.


Assuntos
4-Butirolactona/análogos & derivados , Cajanus/microbiologia , Nodulação , Percepção de Quorum , Sinorhizobium , 4-Butirolactona/química , 4-Butirolactona/genética , 4-Butirolactona/metabolismo , Proteínas de Bactérias/genética , Cajanus/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Filogenia , Percepção de Quorum/genética , Percepção de Quorum/fisiologia , RNA Ribossômico 16S , Rhizobiaceae/classificação , Rhizobiaceae/isolamento & purificação , Rhizobiaceae/metabolismo , Sinorhizobium/isolamento & purificação , Sinorhizobium/metabolismo , Simbiose
12.
Theor Appl Genet ; 133(3): 737-749, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31844966

RESUMO

This study has identified single-nucleotide polymorphism (SNP) markers associated with nine yield-related traits in pigeonpea by using two backcross populations (BP) developed through interspecific crosses and evaluating them at two locations and 3 years. In both the populations, markers have shown strong segregation distortion; therefore, a quantitative trait locus (QTL) mapping mixed model was used. A total of 86 QTLs explaining 12-21% phenotypic variation were detected in BP-1. On the other hand, 107 QTLs explaining 11-29% phenotypic variation were detected in BP-2. Although most QTLs were environment and trait specific, few stable and consistent QTLs were also detected. Interestingly, 11 QTLs in BP-2 were associated with more than one trait. Among these QTLs, eight QTLs associated with days to 50% flowering and days to 75% maturity were located on CcLG07. One SNP "S7_14185076" marker in BP-2 population has been found associated with four traits, namely days to 50% flowering, days to 75% maturity, primary branches per plant and secondary branches per plant with positive additive effect. Hence, the present study has not only identified QTLs for yield-related traits, but also discovered novel alleles from wild species, which can be used for improvement of traits through genomics-assisted breeding.


Assuntos
Cajanus/crescimento & desenvolvimento , Cajanus/genética , Locos de Características Quantitativas , Alelos , Mapeamento Cromossômico , Cromossomos de Plantas , Cruzamentos Genéticos , Estudos de Associação Genética , Ligação Genética , Marcadores Genéticos , Genômica , Genótipo , Técnicas de Genotipagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
13.
J Basic Microbiol ; 60(1): 4-13, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31682282

RESUMO

Salinity and drought are the major abiotic stresses that limit agricultural productivity. Application of plant growth promoting rhizobacteria (PGPR) is an attractive technology but with the bottlenecks of reduced efficacy and survivability in the environment. For increased efficiency of PGPR strains, the impact of stresses on the native bacterial community needs to be studied. Experimentally induced stresses would be ideal to assess the immediate perturbances in the structure of soil bacterial community. Hence, the study focused on the effect of experimentally-induced salinity, and drought stress on rhizospheric bacterial community of Cajanus cajan. A plant growth experiment was set up to induce salinity and drought stresses. Shifts in the bacterial community were assessed by a culture-independent technique of denaturing gradient gel electrophoresis using 16S ribosomal RNA gene and transcript as markers, leading to a comparison of the resident with the active bacterial community. The impact on plant was evaluated by measurement of plant biometrics. Further, salinity and drought-stressed conditions led to distinct shifts in native and active rhizospheric bacterial community, corresponding to the higher decline at induction of stresses, and stabilization at later time points. The study encompasses the perturbations in the active and resident rhizospheric bacterial community caused by the induction of two different abiotic stresses along the plant's growth.


Assuntos
Cajanus/microbiologia , Microbiota/fisiologia , Rizosfera , Estresse Fisiológico , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Cajanus/crescimento & desenvolvimento , Análise por Conglomerados , Secas , Microbiota/genética , RNA Ribossômico 16S/genética , Salinidade , Solo/química , Microbiologia do Solo
14.
J Food Biochem ; 43(2): e12706, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-31353645

RESUMO

Germination of legumes is potential bioprocessing technique to improve the nutrient digestibility and enhancement of bioactive components. The present investigation studies the effects of different germination conditions on the bioactive components, antioxidant activity, and in vitro nutrient digestibility of pigeon pea. Results obtained indicated that increase in germination time and temperature modifies the bioactive components and nutritional digestibility of the pigeon pea. Studies have shown that increase in germination time from 12 to 48 hr and temperature from 25 to 35°C, results in significant increase in accumulation of total pheolics and flavonoid content as a result of cell wall degrading enzymes. Germination for prolonged time at higher temperature also significantly increases the antioxidant potential and reducing power of the germinated pigeon pea. Increased activity of hydrolytic enzymes alters the structure of starch and proteins and thus enhanced in vitro starch and protein digestibility and also lowers down the hot paste viscosity of germinated pigeon pea. PRACTICAL APPLICATIONS: Currently, consumers are increasingly interested in high-quality natural health foods with high biological value and better nutrient digestibility. Germinated grains legumes become popular among people engrossed in improving and maintaining their health by changing dietary habits. Germinated pigeon pea exhibited better nutrient digestibility with improved texture and flavor, higher antioxidant activity and more bioactive components with lower pasting viscosity due to enzymatic modification of starch and protein in the grain. For this reason, use of germinated pigeon pea flour can provide an excellent example of functional food with high dietary protein value. Germinated pigeon pea flour can be utilized as a functional ingredient in the preparation of novel function foods, and it would intensify metabolism, strengthen immunity, reimburse deficiencies of vitamins and mineral, lower the risk of various diseases and exert health-promoting effects.


Assuntos
Antioxidantes/metabolismo , Cajanus/metabolismo , Manipulação de Alimentos/métodos , Sementes/crescimento & desenvolvimento , Antioxidantes/química , Cajanus/química , Cajanus/crescimento & desenvolvimento , Digestão , Farinha/análise , Alimento Funcional/análise , Germinação , Humanos , Valor Nutritivo , Sementes/química , Sementes/metabolismo , Amido/química , Amido/metabolismo , Temperatura , Fatores de Tempo
15.
BMC Genomics ; 20(1): 235, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30898108

RESUMO

BACKGROUND: Pigeonpea has considerable extent of insect-aided natural out-crossing that impedes genetic purity of seeds. Pre-anthesis cleistogamy in pigeonpea promotes self-pollination which helps in maintaining genetic purity. The cleistogamous flowers are linked with shriveled seeds, an undesirable trait from variety adoption point of view, and breeding using genomics tools can help in overcoming this constraint. Therefore, in order to identify genomic regions governing these target traits, one recombinant inbred line (RIL) population was developed using contrasting parents (ICPL 99010 and ICP 5529) for flower shape and shriveled seeds. The RILs were phenotyped for two years and genotyped using the Axiom Cajanus SNP Array. RESULTS: Out of the 56,512 unique sequence variations on the array, the mapping population showed 8634 single nucleotide polymorphism (SNPs) segregating across the genome. These data facilitated generation of a high density genetic map covering 6818 SNPs in 974 cM with an average inter-marker distance of 0.1 cM, which is the lowest amongst all pigeonpea genetic maps reported. Quantitative trait loci (QTL) analysis using this genetic map and phenotyping data identified 5 QTLs associated with cleistogamous flower, 3 QTLs for shriveled seed and 1 QTL for seed size. The phenotypic variance explained by these QTLs ranged from 9.1 to 50.6%. A consistent QTL "qCl3.2" was identified for cleistogamous flower on CcLG03 covering a span of 42 kb in the pigeonpea genome. Epistatic QTLs were also identified for cleistogamous flower and shriveled seed traits. CONCLUSION: Identified QTLs and genomic interactions for cleistogamous flower, shriveled seed and seed size will help in incorporating the required floral architecture in pigeonpea varieties/lines. Besides, it will also be useful in understanding the molecular mechanisms, and map-based gene cloning for the target traits.


Assuntos
Cajanus/genética , Mapeamento Cromossômico , Flores/crescimento & desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Sementes/crescimento & desenvolvimento , Cajanus/crescimento & desenvolvimento , Genótipo , Fenótipo
16.
Microbiol Res ; 218: 32-40, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30454656

RESUMO

Rhizobium sp. Td3 is a Sesbania plant growth promoting, Cajanus cajan nodulating rhizobia. Studying its whole genome was important as it is a potent phosphate solubilizer with constitutive gluconic acid production ability through operation of the periplasmic glucose oxidation pathway even under conditions of catabolite repression. This is in contrast to the other explored phosphate solubilizers. Rhizobial isolates sequenced so far are known to lack components of the direct glucose oxidation pathway and cannot produce gluconic acid on its own. Here, we present the genome sequence of Rhizobium sp. Td3. Genome comprises of a single chromosome of size 5,606,547 bp (5.6 Mb) with no symbiotic plasmid. Rhizobium leguminosarum bv. viciae USDA2370 was the closest whole genome known. 109 genes responsible for diverse plant growth promoting activities like P solubilization, synthesis of acetoin, nitric oxide, indole-3 acetic acid, exopolysaccharide, siderophore and trehalose have been identified. Flagellar proteins, genes encoding antibiotic and metal resistance, enzymes required for combating oxidative stress as well as attachment and colonization in the plant rhizosphere are also present. Availability of genome sequence of such a versatile plant growth promoting agent will help in exploiting all the phyto-beneficial traits of Td3 for its use as a biofertilizer.


Assuntos
Cajanus/microbiologia , Genoma Bacteriano/genética , Rhizobium/genética , Cajanus/crescimento & desenvolvimento , Gluconatos/metabolismo , Fosfatos/metabolismo , Desenvolvimento Vegetal , Rhizobium/classificação
17.
Environ Res ; 159: 283-290, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28825982

RESUMO

Modern plant breeding tends to focus on maximizing yield, with one of the most ubiquitous implementations being shorter-duration crop varieties. It is indisputable that these breeding efforts have resulted in greater yields in ideal circumstances; however, many farmed locations across Africa suffer from one or more conditions that limit the efficacy of modern short-duration hybrids. In view of global change and increased necessity for intensification, perennial grains and long-duration varieties offer a nature-based solution for improving farm productivity and smallholder livelihoods in suboptimal agricultural areas. Specific conditions where perennial grains should be considered include locations where biophysical and social constraints reduce agricultural system efficiency, and where conditions are optimal for crop growth. Using a time-series of remotely-sensed data, we locate the marginal agricultural lands of Africa, identifying suboptimal temperature and precipitation conditions for the dominant crop, i.e., maize, as well as optimal climate conditions for two perennial grains, pigeonpea and sorghum. We propose that perennial grains offer a lower impact, sustainable nature-based solution to this subset of climatic drivers of marginality. Using spatial analytic methods and satellite-derived climate information, we demonstrate the scalability of perennial pigeonpea and sorghum across Africa. As a nature-based solution, we argue that perennial grains offer smallholder farmers of marginal lands a sustainable solution for enhancing resilience and minimizing risk in confronting global change, while mitigating social and edaphic drivers of low and variable production.


Assuntos
Agricultura/métodos , Clima , Produtos Agrícolas/crescimento & desenvolvimento , Grão Comestível/crescimento & desenvolvimento , Mapeamento Geográfico , África , Cajanus/crescimento & desenvolvimento , Sorghum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
18.
Environ Sci Pollut Res Int ; 24(22): 18520-18535, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28646312

RESUMO

Arsenic (As) gets accumulated in plants via phosphorous transporters and water channels and interferes with nutrient and water uptake, adversely affecting growth and productivity. Although, Si and AM have been reported to combat arsenic stress, their comparative and interactive roles in ameliorating As V and As III toxicities have not been reported. Study evaluated effects of Si and Rhizophagus irregularis on growth, As uptake and yield under arsenate and arsenite stress in two pigeonpea genotypes (metal tolerant-Pusa 2002 and metal sensitive-Pusa 991). Higher As accumulation and translocation was observed in As III treated roots of Pusa 991 than those of Pusa 2002 when compared with As V. Roots were more negatively affected than shoots which led to a significant decline in nutrient uptake, leaf chlorophylls, and yield, with As III inducing more negative effects. Pusa 2002 established more effective mycorrhizal symbiosis and had higher biomass than Pusa 991. Si was more effective in inducing shoot biomass while AM inoculation significantly improved root biomass. AM enhanced Si uptake in roots and leaves in a genotype dependent manner. Combined application of Si and AM were highly beneficial in improving leaf water status, chlorophyll pigments, biomass, and productivity. Complete amelioration of negative impacts of both concentrations of As V and lower concentration of As III were recorded under +Si +AM in Pusa 2002. Results highlighted great potential of Si in improving growth and productivity of pigeonpea through R. irregularis under As V and As III stresses.


Assuntos
Arseniatos/toxicidade , Arsenitos/toxicidade , Cajanus/efeitos dos fármacos , Glomeromycota/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Silício/química , Poluentes do Solo/toxicidade , Biomassa , Cajanus/crescimento & desenvolvimento , Cajanus/metabolismo , Cajanus/microbiologia , Modelos Teóricos , Estresse Oxidativo/efeitos dos fármacos , Solo/química , Simbiose
19.
Theor Appl Genet ; 130(9): 1773-1784, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28540572

RESUMO

KEY MESSAGE: We report growth habit profiling following SEM, genetic mapping and QTL analysis. Highlighted CcTFL1 , a candidate for determinacy in pigeonpea, since an Indel marker derived from this gene co-segregated with Dt1 locus. Pigeonpea (Cajanus cajan) is one of the most important legume crops grown in arid and semi-arid regions of the world. It is characterized with few unique features compared with other legume species, such as Lotus, Medicago, and Glycine. One of them is growth habit, an important agronomic trait. In the present study, identification of mutations affecting growth habit accompanied by a precise analysis of phenotype has been done which will shed more light upon developmental regulation in pigeonpea. A genetic study was conducted to examine the inheritance of growth habit and a genotyping by sequencing (GBS)-based genetic map constructed using F2 mapping population derived from crossing parents ICP 5529 and ICP 11605. Inheritance studies clearly demonstrated the dominance of indeterminate (IDT) growth habit over determinate (DT) growth habit in F2 and F2:3 progenies. A total of 787 SNP markers were mapped in the genetic map of 1454 cM map length. Growth habit locus (Dt1) was mapped on the CcLG03 contributing more than 61% of total phenotypic variations. Subsequently, QTL analysis highlighted one gene, CcTFL1, as a candidate for determinacy in pigeonpea, since an Indel marker derived from this gene co-segregated with the Dt1 locus. Ability of this Indel-derived marker to differentiate DT/IDT lines was also validated on 262 pigeonpea lines. This study clearly demonstrated that CcTFL1 is a candidate gene for growth habit in pigeonpea and a user-friendly marker was developed in the present study which will allow low-cost genotyping without need of automation.


Assuntos
Cajanus/crescimento & desenvolvimento , Cajanus/genética , Genes de Plantas , Proteínas de Plantas/genética , Mapeamento Cromossômico , Técnicas de Genotipagem , Mutação INDEL , Fenótipo , Polimorfismo de Nucleotídeo Único
20.
J Sci Food Agric ; 97(13): 4562-4570, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28337748

RESUMO

BACKGROUND: In recent years, agro-bionanotechnology has paved the way towards revolutionizing current practices in the food and agricultural fields. In the present study, the effect of copper nanoparticles (CuNPs) alone and in combination with the growth-promoting fungus Piriformospora indica on 2-week-old seedlings of Cajanus cajan was evaluated. Gelatin-coated stable CuNPs were synthesized by the chemical reduction method using hydrazine hydrate as a reducing agent. RESULTS: CuNPs were characterized by using UV-visible spectroscopy, zeta potential measurement and transmission electron microscopy. The nanoparticles were found to be quite spherical with a diameter within the range 40 ± 10 nm. After the application of CuNPs and P. indica to the host plant C. cajan, the vitality of plants was determined using a Handy-PEA (plant efficiency analyzer) instrument. Handy-PEA analysis (which measures chlorophyll a fluorescence) indicated that seedlings inoculated with a combination of CuNPs and P. indica were the healthiest and also showed maximum vitality as compared to seedlings inoculated with CuNPs or P. indica alone. CONCLUSION: These results suggest that CuNPs in combination with P. indica can serve as a nanobiofertilizer for enhancement of the growth and productivity of C. cajan. © 2017 Society of Chemical Industry.


Assuntos
Basidiomycota/fisiologia , Cajanus/efeitos dos fármacos , Cajanus/microbiologia , Cobre/farmacologia , Endófitos/fisiologia , Cajanus/crescimento & desenvolvimento , Cobre/química , Nanopartículas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...